Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oman Med J ; 37(5): e419, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36341003

RESUMO

Objectives: Non-small cell lung cancer (NSCLC) accounts for 75-85% of all lung cancer diagnoses. This meta-analysis sought to estimate the overall survival (OS) of NSCLC based on randomized control trials which had compared docetaxel with kinase inhibitors, antineoplastic agents, and monoclonal antibodies as second-line chemotherapy for advanced NSCLC. Methods: We selected 18 randomized control trials which used docetaxel as the standard treatment arm, while kinase inhibitors, antineoplastic agents, and monoclonal antibodies constituted the experimental arm. The methodological quality of the trial was classified according to the Modified Jadad score. Several steps were taken to reduce publication bias. A forest plot was used to graphically summarize the meta-analysis. Results: The Hedge's g value of antineoplastic agents was 0.11 (95% CI: -0.03-0.26), while for kinase inhibitors was 0.04 (95% CI: -0.10-0.17) and monoclonal antibodies was 0.05 (95% CI: -0.02-0.13). Forest plot showed a clear though only slightly higher overall survival using docetaxel compared to those of the antineoplastic agents, kinase inhibitors, and monoclonal antibodies, due to the existence of moderate heterogeneity and lower impact. Conclusions: Overall, the patients in these studies who were in the standard (docetaxel) treatment arm had slightly better OS than those in the intervention treatment arm. As per the results, docetaxel was more effective in the second-line treatment of advanced NSCLC than antineoplastic agents, monoclonal antibodies, and kinase inhibitors. We infer that docetaxel-based second-line therapy for patients with advanced NSCLC is supported by our meta-analysis.

2.
Bioorg Med Chem Lett ; 23(20): 5740-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992862

RESUMO

With the aim to discover orally active small molecules that stimulate glucose uptake, high throughput screening of a library of 5000 drug-like compounds was conducted in differentiated skeletal muscle cells in presence of insulin. N-Substituted phthalazinone acetamide was identified as a potential glucose uptake modulator. Several novel derivatives were synthesized to establish structure activity relationships. Identified lead thiazolyl-phthalazinone acetamide (7114863) increased glucose uptake (EC50 of 0.07±0.02 µM) in differentiated skeletal muscle cells in presence of insulin. Furthermore, 7114863 was superior to rosiglitazone under similar experimental conditions without inducing PPAR-γ agonist activity thus making it a very interesting scaffold.


Assuntos
Acetamidas/química , Ftalazinas/química , Tiazóis/química , Acetamidas/síntese química , Acetamidas/farmacologia , Animais , Linhagem Celular , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos , Glucose/metabolismo , Ensaios de Triagem em Larga Escala , Humanos , Hipoglicemiantes , Insulina/farmacologia , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , PPAR gama/agonistas , PPAR gama/metabolismo , Ftalazinas/síntese química , Ftalazinas/farmacologia , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/farmacologia
3.
Int J Med Chem ; 2013: 201580, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25374688

RESUMO

Metabolic syndrome is a widely prevalent multifactorial disorder associated with an increased risk of cardiovascular disease and type 2 diabetes mellitus. High plasma levels of insulin and glucose due to insulin resistance are a major component of the metabolic disorder. Thiazolidinediones (TZDs) are potent PPARγ ligand and used as insulin sensitizers in the treatment of type 2 diabetes mellitus. They are potent insulin-sensitizing agents but due to adverse effects like hepatotoxicity, a safer alternative of TZDs is highly demanded. Here we report synthesis of N-(6-(4-(piperazin-1-yl)phenoxy)pyridin-3-yl)benzenesulfonamide derivatives as an alternate remedy for insulin resistance.

4.
Eur J Med Chem ; 58: 355-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142675

RESUMO

The thiazolidinediones (TZDs) are a class of oral antidiabetic drugs that improve insulin sensitivity in patients with type 2 diabetes. Although the mechanism by which the TZDs lower insulin resistance is unclear, they are known to target the peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor. Ligands for PPARγ regulate adipocyte production and secretion of fatty acids as well as glucose metabolism, resulting in increased insulin sensitivity in adipose tissue, liver, and skeletal muscle. However, TZDs have several adverse effects, including weight gain and liver toxicity. Herein we report identification of non-TZD PPARγ agonists which exhibit beneficial effects similar to that of TZDs in animal models, but without the associated adverse effects.


Assuntos
PPAR gama/agonistas , Quinolinas/farmacologia , Sulfonamidas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , PPAR gama/metabolismo , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
5.
AMB Express ; 1(1): 42, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22104600

RESUMO

Type-2 diabetes is mediated by defects in either insulin secretion or insulin action. In an effort to identify extracts that may stimulate glucose uptake, similar to insulin, a high throughput-screening assay for measuring glucose uptake in skeletal muscle cells was established. During the screening studies to discover novel antidiabetic compounds from microbial resources a Streptomyces strain PM0324667 (MTCC 5543, the Strain accession number at Institute of Microbial Technology, Chandigarh, India), an isolate from arid soil was identified which expressed a secondary metabolite that induced glucose uptake in L6 skeletal muscle cells. By employing bioactivity guided fractionation techniques, a tri-substituted simple aromatic compound with anti-diabetic potential was isolated. It was characterized based on MS and 2D NMR spectral data and identified as NFAT-133 which is a known immunosuppressive agent that inhibits NFAT-dependent transcription in vitro. Our investigations revealed the antidiabetic potential of NFAT-133. The compound induced glucose uptake in differentiated L6 myotubes with an EC50 of 6.3 ± 1.8 µM without activating the peroxisome proliferator-activated receptor-γ. Further, NFAT-133 was also efficacious in vivo in diabetic animals and reduced systemic glucose levels. Thus it is a potential lead compound which can be considered for development as a therapeutic for the treatment of type-2 diabetes. We have reported herewith the isolation of the producer microbe, fermentation, purification, in vitro, and in vivo antidiabetic activity of the compound.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...